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e How good of a quantum communication resource is this channel?
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e The traditional measure used to assess the quality of a teleportation protocol

is the teleportation fidelity:

F(A) = / | A) ).

e This is the fidelity of transmission averaged over all input pure states |1)).

Horodecki et al. PRA 60 1888 (1999)
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e An alternative measure is the teleportation entanglement fidelity.

F(A) = (®T|AC7Y ®id9" (@TCC")|oT)C"C”.
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Lemma: Let (pA8, {11}, {D,}) define a one-way teleportation protocol. Then
the teleportation entanglement fidelity is given by
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the success probability of a corresponding quantum state discrimination protocol.
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Let (pA8, {11}, {D,}) define a one-way teleportation protocol. Then
the teleportation entanglement fidelity is given by

N

N
1
F = P (N > Tr[Hﬁcwfc]) , where w, =id" @ DFC(pAP).
r=1

Interpretation:

The entanglement fidelity of every one-way teleportation protocol is equivalent to
the success probability of a corresponding quantum state discrimination protocol.

This generalizes a similar formula for port-based teleportation protocols
to arbitrary teleportation protocols. Ishizaka, Hiroshima, PRL 101, 240501 (2008)
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e How useful is a given quantum state p”*Z for teleportation?

Definition:

The |C|-dimensional teleportation fidelity of state p'Z is defined as the maximum entanglement

fidelity among all |C|-dimensional teleportation protocols using p%:

F(p"?;1C)) = max F(A)

1 N

=  max —— Tr[I12¢wAC],  where w, = id? @ DEC(pAB).
{Il:}2.{Ds}s |C? ; | | e 07

e For the classical preparation channel D, (-) = Tr(-)|x)(z| and measurement I, =1 ® |x) (x|, we have
Tr[[w,] = Tr[(L® |z)(z])(p? @ ) {z|9)] = 1.

e This lower bound is called the classical teleportation threshold.

Fundamental question: When is this lower bound tight?
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e Recall that a bipartite state pA? is said to satisfy the reduction criterion if
A B AB
pr L7 —p > 0. Horodecki & Horodecki PRA 59 4206 (1999)

(i) Every separable (non-entangled) state satisfies the reduction criterion.

(ii) Every state violating the reduction criterion is distillable.

I:> If pAZ is not distillable, then w, = id* & DBE=C (pAB) satisfies the reduction criterion.
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Corollary: Bound entangled states cannot exceed the (one-way) teleportation classical threshold.

Horodecki et al. PRA 60 1888 (1999)
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Theorem: A bipartite state p? is useful for |C|-dimensional teleportation (i.c., exceed the
classical fidelity threshold |C|~1)) iff there exists a channel £87¢ such that
pB) violates the reduction criterion.

wAC = id* @ £8P

Chitambar, FL, arXiv:2302.14798

e Compare with the classic result of the Horodeckis:

Theorem: A bipartite state p”? is useful for |C|-dimensional teleportation (i.e., exceed the
classical fidelity threshold |C]™1)) iff there exists a one-way LOCC map £ such that
L(p) has a singlet fraction exceeding |C|™!:

1

(@F|L(p)|@T)CC > ek

Horodecki et al. PRA 60 1888 (1999)

e Our work simplifies the condition for non-classical teleportation fidelity from an optimization
over all one-way LOCC maps to an optimization over just local maps.
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Example: qutrit Werner states

Consider the 3 ® 3 family of Werner states:

1
S ﬂ[(3—)\)]1?®]13‘?—|—(3)\—1)15'§43), where [F is the SWAP operator.

Every p) satisfies the reduction criterion, but py is entangled iff A < 0.

However, consider the CPTP on Bob’s system that collapses it to a two-dimensional subspace,

E(p) = (10){0] + [1) (1)) p(|0) (0] + [1){1]) 4 [0)(2[[2){0].
Easy calculation: id® ® &8 ~C(p4B) violates the reduction criterion for —1 < A < —3/7.

|:> Even states satisfying the reduction criterion can be useful for teleportation.
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e Every teleportation channel A : C' — C’ using p has a
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How good are general dense coding channels?

o Let (4T Z 2V (z|¥ @ |z)(z|X define an N-dimensional maximally correlated state.
C|
. . . voo 1 | |
e This is the classical analog of the maximally entangled state |®7)%% = ﬁ Z i) @ |i) .
i=1
X// .
_|_ XX//
(v") \
\ 7S DB—=C W ?
x - % (’)/_|_)X/Xl/
pB A [[AC—X’ X’

e One way to measure the quality of the classical channel is how well it preserves the maximally
correlated (classical) state.
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e Analogous to the entanglement fidelity of a quantum channel,
we define the classical correlation fidelity of a channel W: X — X’ as

FC](W) — Tr[(’y+)X,XI’WX—>X’ 2 idXH (,Y—Q—)XX”]
1 N
r=1

Interpretation: The classical correlation fidelity of channel W is equivalent to
how well the channel transmits a randomly chosen message = € {1,--- , N}.
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Teleportation and dense coding duality

e The classical threshold of the classical fidelity is min{%, 1}.

{1,

Interpretation: Using any non-entangled state p*” and a |C|-dimensional (noiseless) quantum channel,

Alice can send Bob N classical messages with pgyce < min{%, 1}.
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Chitambar, FL, arXiv:2302.14798

Theorem: For N > |C], a bipartite state pZ is useful for dense coding (i.e., can exceed the

classical fidelity threshold |C|/N)) iff there exists a channel £87¢ such that
wAC = id* @ EB7C(pAP) violates the reduction criterion.
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Conclusions and ongoing research

We have formulated an operational and quantitative duality between teleportation and dense
coding, generalizing and extending earlier ideas of Werner. Werner JPA 34 7081 (2001)

The state discrimination structure of port-based teleportation protocols generalizes to all one-
way teleportation protocols.

One key take-home message:

A bipartite state pAf can exceed the classical teleportation threshold
iff it can exceed the classical dense coding threshold.

What states can exceed these thresholds? How to decide if a given state belongs to this class?

We need to decide if there exists a channel E87C such that w4¢ = id* ® £87C (pA8) violates
the reduction criterion.
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e We can phrase this question as a bilinear optimization problem.

e For a given state pZ, define the conditional state pPl4 = (p?)~1/2pAB (pA)~1/2:

|:> id? ® E87C(pAB) satisfies the reduction criterion iff id* @ E87¢(pA1P) < 11 @ 1.
e The largest eigenvalue of idA®SB_>C(PA|B) Is |II%%}§<SD|TTB((PB|A)TJE) 22
®

where Je = id? ® £87C(¢+BB) is the Choi matrix of £.

e Then pA® can exceed the classical teleportation threshold iff

1< MAX MAX Tr[wCTr g ((pBANT JBO)] — Numerically feasible for small dimensions
wAC
subject to TroJJPY =15, —  — Current work involves analyzing this for
Tr|w] = 1; certain families of states.

w,J > 0.

— (Can it be reduced to an SDP?




Thank you for your attention!
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