Strong converse theorems using Rényi entropies

Felix Leditzky^a

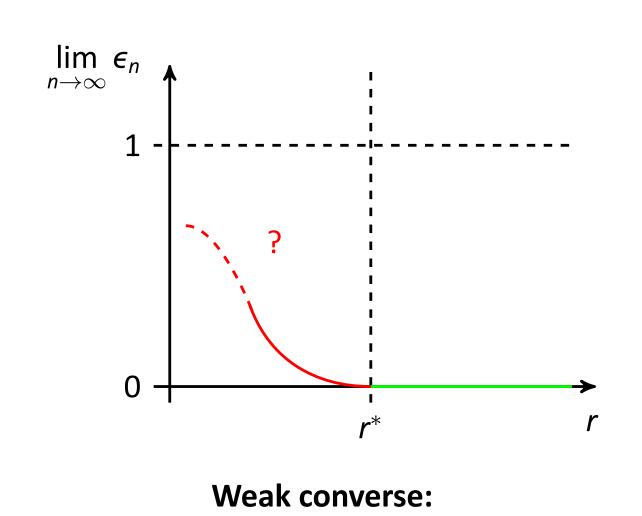
Mark M. Wilde^b

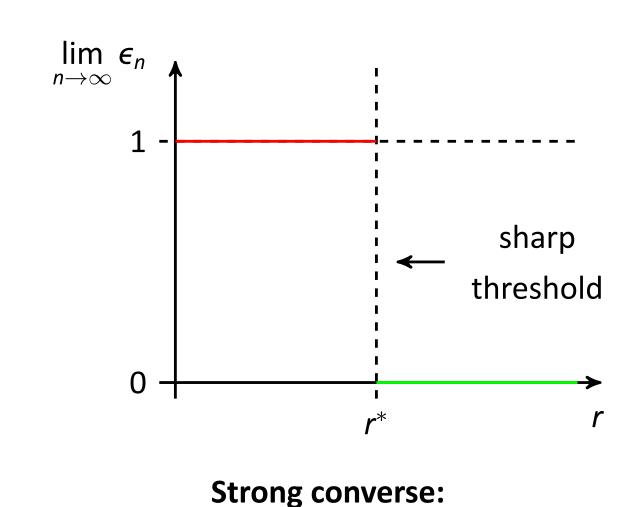
Nilanjana Datta^a

^a University of Cambridge ^b Louisiana State University; Email: f.leditzky@statslab.cam.ac.uk

Weak vs. strong converse

Consider an information-theoretic task that takes n copies of some input state ρ , and accomplishes the goal of the task up to an error ϵ_n consuming an available resource at a rate r. If there is a protocol (or code) satisfying $\lim_{n\to\infty} \epsilon_n = 0$, we say that r is an achievable rate. The **optimal rate** r^* is the infimum over all achievable rates. A **coding theorem** establishes $r^* = f(\rho)$ for some entropic quantity f.





If $r < r^*$ then $\lim_{n \to \infty} \epsilon_n = 1$.

How can we prove strong converse theorems?

Find bounds on the error ϵ_n in terms of Rényi entropies.

If $r < r^*$ then $\lim_{n \to \infty} \epsilon_n > 0$.

Rényi entropies

▶ **Definition:** For $\alpha \in (0, \infty) \setminus \{1\}$ and states ρ, σ with supp $\rho \subseteq \text{supp } \sigma$, the **sandwiched Rényi divergence of order** α [MDS+13, WWY14] is defined as

$$\widetilde{D}_{lpha}(
ho\|\sigma)\coloneqq rac{1}{lpha-1}\log \mathrm{Tr}\left(\sigma^{(1-lpha)/(2lpha)}
ho\sigma^{(1-lpha)/(2lpha)}
ight)^{lpha}.$$

▶ Data processing inequality: For a quantum channel Λ and $\alpha \ge 1/2$, we have [Bei13, FL13]

$$\widetilde{D}_{\alpha}(\rho \| \sigma) \geq \widetilde{D}_{\alpha}(\Lambda(\rho) \| \Lambda(\sigma)).$$

▶ Limit property: $\lim_{\alpha \to 1} \widetilde{D}_{\alpha}(\rho \| \sigma) = D(\rho \| \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)].$

▶ Derived quantities:

- $ightharpoonup ext{Rényi entropy: } S_{\alpha}(A)_{\rho} = -\widetilde{D}_{\alpha}(\rho_{A} \| I_{A})$
- ightharpoonup Rényi conditional entropy (RCE): $S_{\alpha}(A|B)_{\rho} \coloneqq -\min_{\sigma_{B}} \widetilde{D}_{\alpha}(\rho_{AB}||I_{A}\otimes\sigma_{B})$
- ightharpoonup Rényi mutual information (RMI): $I_{\alpha}(A;B)_{\rho} \coloneqq \min_{\sigma_{B}} \widetilde{D}_{\alpha}(\rho_{AB} || \rho_{A} \otimes \sigma_{B})$
- ightharpoonup RCE and RMI inherit the data processing inequality from $\widetilde{D}_{\alpha}(\cdot||\cdot)$, and we have

$$\lim_{\alpha \to 1} S_{\alpha}(A)_{\rho} = S(\rho) = -\operatorname{Tr}(\rho_{A} \log \rho_{A})$$

$$\lim_{\alpha \to 1} S_{\alpha}(A|B)_{\rho} = S(A|B)_{\rho} = S(AB)_{\rho} - S(B)_{\rho}$$

$$\lim_{\alpha \to 1} I_{\alpha}(A;B)_{\rho} = I(A;B)_{\rho} = S(A)_{\rho} - S(A|B)_{\rho}$$

Extending the Rényi entropy calculus

Dimension bounds

For $\alpha \geq 1/2$ and a tripartite state ρ_{ABC} with C quantum,

$$S_{\alpha}(A|BC)_{\rho} + 2\log|C| \geq S_{\alpha}(A|B)_{\rho}$$

$$I_{\alpha}(A;B)_{\rho} + 2 \log |C| \geq I_{\alpha}(A;BC)_{\rho}.$$

whereas for ρ_{ABX} with X classical,

$$S_{\alpha}(A|BX)_{\rho} + \log|X| \ge S_{\alpha}(A|B)_{\rho}$$

$$I_{\alpha}(A; B)_{\rho} + \log |X| \ge I_{\alpha}(A; BX)_{\rho}.$$

Uncorrelated states

For $\alpha \geq 1/2$ and product states $\tau_{AB} \otimes \theta_{C}$,

$$S_{\alpha}(A|BC)_{\tau\otimes\theta}=S_{\alpha}(A|B)_{\tau}$$

$$I_{\alpha}(A;BC)_{\tau\otimes\theta}=I_{\alpha}(A;B)_{\tau}.$$

Fidelity bounds

For $\alpha \in (1/2, 1)$, $\beta = \alpha/(2\alpha - 1)$, and bipartite states ρ_{AB} and σ_{AB} ,

$$S_{\alpha}(A|B)_{\rho} - S_{\beta}(A|B)_{\sigma} \ge \frac{2\alpha}{1-\alpha} \log F(\rho_{AB}, \sigma_{AB}) \quad \text{where } F(\omega, \tau) \coloneqq \left\| \sqrt{\omega} \sqrt{\tau} \right\|_{1}$$

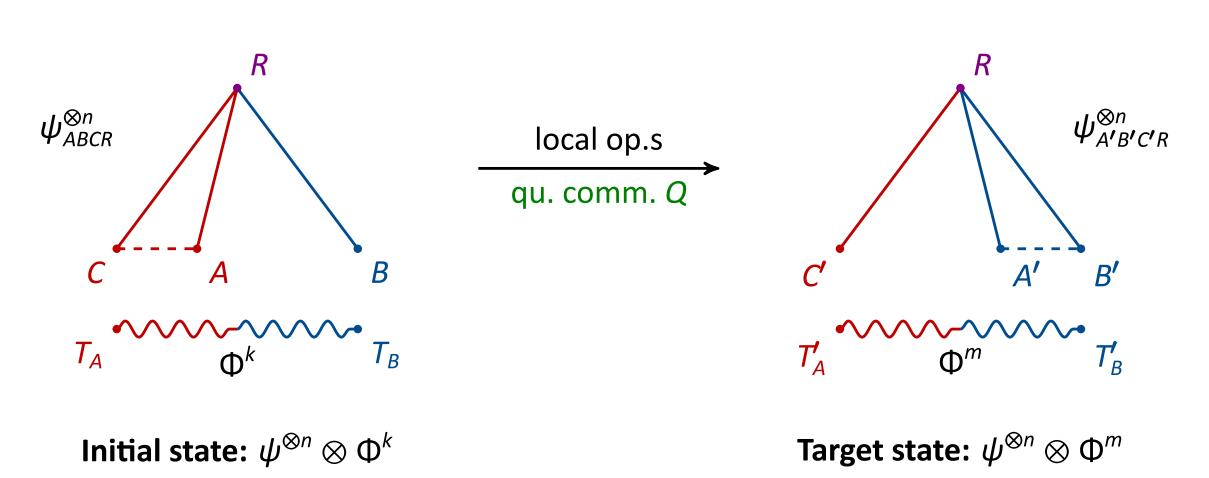
$$I_{\beta}(A;B)_{\rho} - I_{\alpha}(A;B)_{\sigma} \ge \frac{2\alpha}{1-\alpha} \log F(\rho_{AB}, \sigma_{AB}).$$

Discarding classical information

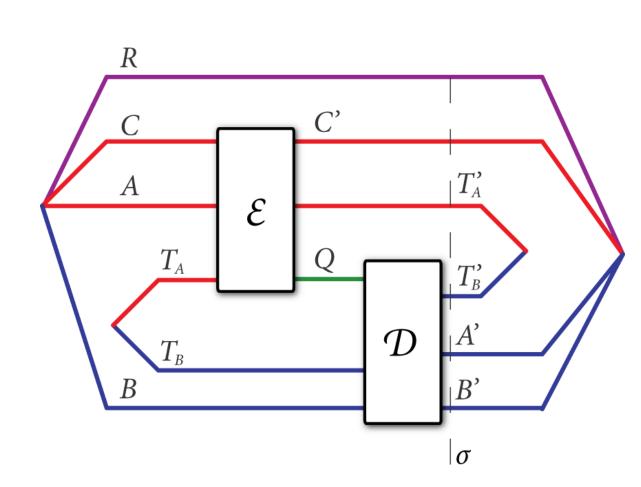
For $\alpha > 0$ and a tripartite state ρ_{ABX} with X classical,

$$S_{\alpha}(AX|B)_{\rho} \geq S_{\alpha}(A|B)_{\rho}.$$

State redistribution



- ▶ Initial situation: Alice (AC, T_A) and Bob (B, T_B) share n copies of a tripartite state ρ_{ABC} (purified by ψ_{ABCR} where R is inaccessible) and a maximally entangled state (MES) $\Phi_{T_AT_B}^k$ of Schmidt rank k.
- ▶ **Goal:** Transfer A system to Bob while preserving all correlations with R, using local operations (encoding \mathcal{E} and decoding \mathcal{D}) and noiseless quantum communication (Q) from Alice to Bob.
- ▶ Target state: n copies of $\rho_{A'B'C'}$ (where A' is with Bob) and some MES $\Phi^m_{T'_AT'_B}$ of Schmidt rank m.



State redistribution protocol

- ▶ **Figure of merit:** Fidelity $F_n := F(\psi^{\otimes n} \otimes \Phi^m, \sigma_n)$, where σ_n is the final state of the protocol.
- ▶ Quantum communication cost: $q := \frac{1}{n} \log |Q|$
- ► Entanglement cost: $e := \frac{1}{n} (\log |T_A| \log |T_A'|) = \frac{1}{n} (\log k \log m)$
- ▶ **Optimal rates:** [LD09, YD09] We have $\lim_{n\to\infty} F_n = 1$ if and only if

$$q \ge \frac{1}{2}I(A;R|B)_{\rho} \qquad q + e \ge S(A|B)_{\rho},$$

where $I(A; R|B)_{\rho} = S(R|B)_{\rho} - S(R|AB)_{\rho}$ is the conditional mutual information.

Strong converse theorem

Strong converse bounds on fidelity

Let $\alpha \in (1/2, 1)$ and set $\beta = \alpha/(2\alpha - 1)$ and $\kappa(\alpha) = (1 - \alpha)/2\alpha$. For every state redistribution protocol with initial state ρ_{ABC} as described above, the fidelity F_n satisfies the following bounds:

$$F_n \le \exp\left\{-n\kappa(\alpha)\left[S_{\beta}(AB)_{\rho} - S_{\alpha}(B)_{\rho} - (q+e)\right]\right\}$$
$$F_n \le \exp\left\{-n\kappa(\alpha)\left[S_{\beta}(R|B)_{\rho} - S_{\alpha}(R|AB)_{\rho} - 2q\right]\right\}$$

As an alternative to the second inequality, we have

$$F_n \leq \exp\left\{-n\kappa(\alpha)\left[I_{\alpha}(R;AB)_{\rho} - I_{\beta}(R;B)_{\rho} - 2q\right]\right\}.$$

- ► The quantity $S_{\beta}(AB)_{\rho} S_{\alpha}(B)_{\rho}$ is a Rényi generalization of the conditional entropy $S(A|B)_{\rho}$ in the sense that $S_{\beta}(AB)_{\rho} S_{\alpha}(B)_{\rho} \xrightarrow{\alpha \to 1} S(A|B)_{\rho}$.
- Assume that $q + e < S(A|B)_{\rho}$ (i.e. rate is in **converse region**). Then, there is an $1/2 < \alpha_0 < 1$ such that we have $\kappa(\alpha_0) \left[S_{\beta_0}(AB)_{\rho} S_{\alpha_0}(B)_{\rho} (q + e) \right] > 0$ where $\beta_0 = \alpha_0/(2\alpha_0 1)$.
- \blacktriangleright The same reasoning applies to the bounds above involving 2q, leading to the following theorem:

Strong converse theorem for state redistribution (see also* [BCT14])

Let ρ_{ABC} be a tripartite state. For any state redistribution protocol with rates q and e satisfying $q+e < S(A|B)_{\rho}$ or $q<\frac{1}{2}I(A;R|B)_{\rho}$, the fidelity decays exponentially fast, i.e. there is a $\delta>0$ such that for every $n\in\mathbb{N}$ we have $F_n\leq \exp\left(-n\delta\right)$.

- * While the authors in [BCT14] first proved a strong converse theorem only for q, our original contribution was the corresponding theorem for q + e. Both papers now include the full theorem as stated above.
- ► In [LWD15] we also prove similar strong converse theorems for:
 - ➤ State redistribution with feedback (allowing back-communication from Bob to Alice)

 - Data compression with QSI