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Weak vs. strong converse State redistribution
Consider an information-theoretic task that takes n copies of some input state p, and accomplishes the R
goal of the task up to an error €, consuming an available resource at a rate r. If there is a protocol (or code) ®n
e . . : . . L ABCR local op.s
satisfying lim,_,.. €, = 0, we say that r is an achievable rate. The optimal rate r* is the infimum over all >

achievable rates. A coding theorem establishes r* = f(p) for some entropic quantity f. qu. comm. Q
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! ! » Initial situation: Alice (AC, T,) and Bob (B, Tg) share n copies of a tripartite state p,5- (purified by
0 E . 0 E . Y15k Where R is inaccessible) and a maximally entangled state (MES) CD'}ATB of Schmidt rank k.
4 f » Goal: Transfer A system to Bob while preserving all correlations with R, using local operations
Weak converse: Strong converse: (encoding £ and decoding D) and noiseless quantum communication (Q) from Alice to Bob.
If r < r* thenlim,_ ., €, > 0. If r < r* thenlim,_ .. €, = 1.
» Target state: n copies of pz~ (Where A" is with Bob) and some MES CD%% of Schmidt rank m.
How can we prove strong converse theorems? R
Find bounds on the error €, in terms of Rényi entropies. - |
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Renyi entropies E
T, Q
» Definition: For a € (0,00) \ {1} and states p, g with supp p C supp o, the sandwiched Rényi <
divergence of order o [MDS+13, WWY14] is defined as T;
B
By (ol|o) = — g Tr (g(=/() pg =1/ C))
a —_—
» Data processing inequality: For a quantum channel A and a > 1/2, we have [Beil3, FL13] State redistribution protocol.
Da(pllo) = Da(A(p)[|A(0))- » Figure of merit: Fidelity F, := F (L/J®n R O, 0,,), where g, is the final state of the protocol.
> Limit property: lim,_,; Dy(p||0) = D(p|lo) = Tr[p(log p — log o)]. » Quantum communication cost: g == + log|Q)|
> Derived quantities: » Entanglement cost: e := >(log|T,| — log|T,|) = >(logk — log m)
Rényi entropy: S,(A), = —D /
> Yl py: Sa(A), «(Pallla) » Optimal rates: [LD09, YD09] We have lim,_ F, = 1 if and only if
> Rényi conditional entropy (RCE): S4(A|B), := —ming, Dy (p5]|la ® O3 1
«(A[B), o «(Pasll ) a2 SI(A;RIB), q+e > S(A[B),,
> Rényi mutual information (RMI): I,(A; B), := miny, Da(pas]l0s @ 05)
where I(A; R|B), = S(R|B), — S(R|AB), is the conditional mutual information.
» RCE and RMI inherit the data processing inequality from D,(:||-), and we have
lim Sq(A), = S(p) = —Tr(p,4 log p,) Strong converse theorem
(!,'_)ml Sa(A[B), = S(A|B), = S(AB), — S(B), Strong converse bounds on fidelity
lim la(A; B)p = I(A; B), = S(A), — S(A[B), leta € (1/2,1) andset B = a/(2a — 1) and k(a) = (1 — a)/2a. For every state redistribution
protocol with initial state p 5. as described above, the fidelity F, satisfies the following bounds:
Extending the Rényi entropy calculus F, < exp {—n«(a)[Ss(AB), — S4(B), — (g + €)]}

F, < — Ss(R|B), — So(R|AB), — 2
= exp e S RIE), = S(RIAR), = 2al)

For @ > 1/2 and a tripartite state p,5. with C quantum, As an alternative to the second inequality, we have

Sa(A|BC), + 2 log|c| > S,(A|B), I.(A; B), + 2 log |C| > 1,(A; BO),. Fo < exp{—nk(a) [l«(R; AB), — I5(R; B), — 2q]} .

whereas for p 5, with X classical,
» The quantity Sg(AB), — S4(B), is a Rényi generalization of the conditional entropy S(A|B), in the

a—1

sense that Sg(AB), — S,(B), — S(A|B),.

Uncorrelated states » Assume that g + e < S(A|B), (i.e. rate is in converse region). Then, thereisan 1/2 < ay < 1 such

S«(A|BX), + log |X| > S.(A|B), Io(A; B), + log |X| > I.(A; BX),.

For o > 1/2 and product states 7,53 ® 6, that we have k(ao) [Sg,(AB), — Sas(B), — (g + €)] > 0 where By = ag/(200 — 1).
Sa(A|BC)@e = Sa(A|B): la(A; BC)igp = 1a(A; B):- » The same reasoning applies to the bounds above involving 2q, leading to the following theorem:
Fidelity bounds Strong converse theorem for state redistribution (see also™ [BCT14])
Fora € (1/2,1), B = a/(2a — 1), and bipartite states p,; and g, Let p,sc be a tripartite state. For any state redistribution protocol with rates g and e satisfying
2a g+ e < S(A|B), or g < 21(A; R|B),, the fidelity decays exponentially fast, i.e. there isa § > 0 such
S«(A[B), — Sg(A|B)s = log F here F =
«(A|B), = S5(AlB)o 2 1—q 5 (P28 925) where F(w, 1) := || Vv], that for every n € N we have F, < exp (—né).
. . . 20
IB(A’ B)P o Ia(A’ B)G —1—q log F(pAB’ GAB)’ * While the authors in [BCT14] first proved a strong converse theorem only for g, our original contribution was the

corresponding theorem for g 4+ e. Both papers now include the full theorem as stated above.

Discarding classical information » In [LWD15] we also prove similar strong converse theorems for:

For a > 0 and a tripartite state p,5, With X classical,

> State redistribution with feedback (allowing back-communication from Bob to Alice)

Sa(AX|B), = Sa(A|B),. > Measurement compression with quantum side information (QSl)

> Randomness extraction against QSI

> Data compression with QSI
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