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Multiple access channel

Simplest network communication scenario involving two senders and one receiver.

Each sender transmits individual

classical messages through

N

common channel to the receiver.
Sender 2
Receiver




Multiple access channel

Input RVs A (sender 1) and B (sender 2).
MAC: Conditional probability distribution N(z|a, b) defines output RV Z.

No communication between senders: A, B are independent.




Capacity region of a MAC

Sender 1 (2) tries to send information at rate R1 (R>).
(R1, Ry) is called achievable if receiver can decode

the two messages with vanishing error. k2

Capacity region: closure of the set of capacity region

all achievable rate pairs (R1, R,).

A

R1

Multiple access channel Typical capacity region



Capacity region of a MAC

Single-letter capacity region of a MAC (Ahlswede '73, Liao '73)

For random variables (A, B) with fixed product distribution ps(a)ps(b),
let Z be the RV defined by the MAC N(z|a, b).
The capacity region of N is the convex hull of all (R, R,) satisfying

R, < I(A; Z|B) R, < I(B;Z|A) R1 + R, < I(AB;2),

as papg varies over all product distributions.

Shannon entropy: Mutual information: Conditional mutual information:
H(X) = —>_ p(x)logp(x) I(X;Y) = H(X) + H(Y) — H(XY) I(X;Y|Z) =I(X;YZ) — I(X;2)



Typical capacity region of a MAC

Constraints for capacity region C:

Ri < I(A; Z

B)
A)

R1+ R2 < I(AB;2).

For fixed product distribution pspg

this region is pentagonal, since:

max{I(A: Z|B), I(B; Z|A)}

I(AB; Z)

R

I(B; Z|A) ‘

I(B;Z)

<
< I(A; Z|B) + I(B; Z|A)
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N\,
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Capacity region of a MAC

Ahlswede-Liao region characterized by single-letter formula.

Complicated part: product constraint (—independence constraint) on input RVs.

Can we use entanglement assistance How hard is it to compute the full region?
to boost transmission rates?

YES NP-HARD

We will study both questions using the theory of non-local games.
For simplicity: focus on the sum rate max{R; + R,: (R1,R2) € C(N)}.

Sum rate constraint: R, + R, < /(AB; Z) for independent A, B.



Non-local games

Referee Referee draws questions (x, X»)

X2 according to some distribution.

Alice answers y;, Bob answers y,.

Y2 TheyWIn if (X17y17X27y2) c W.

Alice Bob No communication allowed for

Alice and Bob to produce answers y;.
Questions x; € X

Answers y; € ) Example: CHSH game

Winning condition W C X; X &5, X V1 X Vs
Non-local game G = (X, Vi, X, Vs, W).

Winning condition: y; ® Yy, = X1 A X



Non-local games: Quantum strategies

Referee Classical value w(G):

X2 Maximal classical winning probability.

Quantum strategies: Alice and Bob
measure a shared entangled state |()
Y2 using POVMs {7}, ¢y,

i )
Alice Bob Quantum value w*(G):

W maximal quantum winning probability.

Example: CHSH-game G




Magic square game

Alice is given a row.
Bob is given a column.
Both answer with bit strings of length 3.

They win, if:
m Alice's parity is even;
m Bob's parity is odd;
m strings agree in overlapping cell.

‘Mermin, PRL 65.27 (1990)]
Peres, Phys. Lett. A 151.3 (1990)]
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Magic square game
g q g %(‘OO>A131 -+ |11 ,4131 |OO A5 B> =+ |11>A232)

Classical value

w(Gys) = 8/9 W (Gus) = 1

Quantum value

[Mermin, PRL 65.27 (1990)], [Peres, Phys. Lett. A 151.3 (1990)], [Brassard et al., Found. Phys. 35.11 (2005)]



MAC in terms of a non-local game

Let G = (X1, V1, X5, Vo, W) be a non-local game.
Inputs: question-answer pairs (X1, Y1; X2, V2) Output: question pair (X1, X;)

X1 X1 If (X17y17X27y2) c W,

Alice —I—>

then )A(,' = Xj.
| Y1

. oot (X17X2)
ame strategy G . N

‘ It (X17y17X27y2) ¢ W;

then (X1, X») unif. random.

Inspired by [Quek & Shor, PRA 95.5 (2017)].



Entanglement assistance for MACs

Alice

X1

X1
-;/1----: If (x1,¥1,%2,¥2) € W,
: N (X1, X2) then X; = x;.
I _—
: G If (X17y17X27y2) ¢ W;
_):2_ o then (X1, X,) unif. random.
X2

Entanglement-assisted
game strategy:

P(y1,y2|x1,%2) = (Y|N7 @ M2|).
for POVMs M*t and M*2.




Sum rate of a non-local game MAC

Let G = (A1, V1, &>, Vo, W) be a non-local game and Ng the MAC derived from it.

Lemma

Let p, = Pr{(x1,y1,X2,¥>) ¢ W)} be the losing probability, and set Z = (X1, X).

Then R1 -+ Rz < /(X1Y1X2Y2,Z) — H(Z) — pL(IOg ‘Xl‘ -+ IOg |X2|)

1) HZ) = log | X1 | + log | A% |;

only possible with sampling x;

For a non-local game G with

uniformly at random! classical value w(G) < 1 players

: o
2) p;, = 0. cannot win on all questions!



Sum rate of a non-local game MAC

Let G = (A1, V1, &>, Vo, W) be a non-local game and Ng the MAC derived from it.

Lemma

Let p, = Pr{(x1,y1,X2,¥>) ¢ W)} be the losing probability, and set Z = (X1, X).

Then R1 -+ Rz < I(X1Y1X2Y2,Z) — H(Z) — pL(IOg ‘Xl‘ -+ IOg |X2|)

Main result: No-Go theorem for classical strategies

Let G be a non-local game with classical value w(G) < 1. Then for the MAC Ng,

Ri+ Ry < log |X1| + log | X;].



Sum rate of a non-local game MAC

Let G = (A1, V1, &>, Vo, W) be a non-local game and Ng the MAC derived from it.

Lemma

Let p, = Pr{(x1,y1,X2,¥>) ¢ W)} be the losing probability, and set Z = (X1, X).

Then R1 -+ Rz < /(X1Y1X2Y2,Z) — H(Z) — pL(IOg ‘Xl‘ -+ IOg |X2|)

Main result: perfect sum rate with entanglement

If w*(G) = 1, then the perfect quantum strategy can be used to achieve
(R1,Ry) = (log |X1|, log | X5|) by drawing (x1, X, ) uniformly at random.

= R; + R, = log | X1 | + log |5



Entanglement helps in a classical task

Summary of main result

There are multiple access channels for which the unassisted capacity region
and the entanglement-assisted capacity region are strictly separated.

In other words: Entanglement shared between senders helps in a
strictly classical coding task!

Remarkable, because entanglement does not boost (asymptotic) capacity of
single-sender-single-receiver channels.



Example: Magic square game channel

Ry | (IogB 0g3) < TN\
1.5 .. achievable using
™ perfect quantum strategy
(w*(Gps) = 1)
14 approximation
to capacity region Bound on
classical sum rate
0.5 (w(Gus) = 8/9)
; X1 = | X =3, Vi = [Do] =8

0 015 1 115 R, log 3 ~ 1.585



Further results

Main result: If w(G) < 1 for a non-local game G and a certain set of strategies,
then Ry + R, < log|X:| + log |5 | for the corresponding MAC Ng.

Unbounded entanglement

There exists a MAC Ng for which the rate point (log |X;|, log |X5|) is only achievable

using infinite-dimensional entangled strategies. Slofstra and Vidick, Ann. H. Poincare 19.10 (2018)]

Thereis a family of channels {Ng } s for which it is undecidable whether (log | X1 |, log | X3])
can be achieved. [Slofstra, Forum Math. Pi 7 (2019)]

NP-hardness

For a given MAC N it is NP-hard to decide whether the rate point (log | X1 |, log |A5|)
belongs to the capacity region (up to O(n—3)). [Hastad, J. ACM 48.4 (2001)]



Open questions

Information-theoretic Optimization-theoretic

B Can we improve sum rate bound Efficiently computable outer

to get "true" separation? bounds for capacity region of MAC?
B Formula for the entanglement- B Efficient optimization over
assisted capacity region? (bilinear) quantum strategies?
B What about arbitrary (three-way) B Can entanglement boost the
entanglement assistance? capacity of arbitrary MACs?

Thanks for your attention!



